Decentralising infrastructure for efficiency


Simen Frostad TV-Bay Magazine
Read ezine online
by Simen Frostad
Issue 91 - July 2014

Among the waves of change rippling through the world of the satellite operator, decentralisation offers some of the more intriguing benefits. In place of the traditional centralised operating model a more distributed infrastructure has been made possible by recent technological developments, and this kind of topology suits operators looking for cost reduction through standardisation of equipment, greater flexibility, and a more resilient redundancy capability that is able to survive the failure of the central production system. These features of a decentralised approach should be of interest to any operator, but it could be argued that they are particularly attractive to operators covering regions that are less-densely populated or where geographical or meteorological challenges exist. These factors are certainly important to a major satellite operator whose infrastructure and operating model is currently under reconstruction.

Until recently, operators have typically employed uplink production chains consists of primary and secondary circuits running in parallel with more or less identical configurations. In the event of a failure on the primary circuit, the operator maintains the service by switching to the backup, either using a switch in a semi-manual process, or with limited automation via NMS triggers. Its also part of this traditional model for the operator to have a central production facility where all the production is done, and to transport the already-modulated content via RF on fibre to the transmitter.

In the new decentralised model a large degree of distributed capability can be introduced into the infrastructure by doing the modulation and some of the multiplexing close to the antennae, and using more sophisticated redundancy switching also at the antenna site, just before the transmit booster. Moving beyond the relatively crude switching capability of the previous generation, this model requires a degree of intelligence in the hardware, to allow the operator confidence in a distributed, hands-off automated redundancy strategy.

Rather than monitoring how each modulator is performing from the control centre and then doing triggered redundancy switching, the more or less autonomous intelligence at each decentralised antenna site can operate independently from the central facility if required, and this is a key aspect of the strategy, increasing the overall redundancy of the system as a whole. Now, the operator can survive a failure in the central system, knowing that it will not affect data elsewhere in the production pipeline.

In the case of a European operator, this independence in redundancy is achieved using the Bridge Technologies VB273 Intelligent Switch, which employs a combination of full-blown ETR290 analysis, a high-performance RF monitoring capability, and a decision engine that compares error condition results against user-defined rules. The greater scope and subtlety of the analysis available allows a much more nuanced and flexible automated assessment of operating status and conditions.

Whereas previous generations of redundancy switches were designed to intervene on a very limited set of conditions such as complete loss of signal, the VB273 can detect a wide range of errors and act accordingly. This capacity allows operators to bring switching rules more into line with current operating realities. For example, if CAS (conditional access) verification is lost on one of the production chains the redundancy switch can automatically check the redundant chains to see if the problem exists there too, and switch to one of them if CAS is intact. Switching is therefore available on the basis of services (such as CAS) as well as on simple hardware operation. Further redundancy can be built into the decentralised model by transporting data from the central production system to the antennae via gigabit fibre, using redundant IP chains.

Aside from the much greater ability to maintain services when errors occur, the decentralised model delivers operational cost benefits. The modular structure makes it easier for the operator to change configuration when required, and changes can be implemented in a modular fashion and remotely, without the need to send engineers to swap out equipment units, or patch in hardwired changes. Consequently theres a reduction in costs and less reliance on specialised skills, changes can be made remotely at any time, to any part of the infrastructure simply by uploading new configurations.

But there are many possible ways of implementing a decentralised redundancy strategy, and each operator may encounter different situations at different times. So a varying degree of autonomy can be useful. The operator may want to intervene and over-ride the default settings for autonomous operation in certain situations, to make changes to the way individual antenna sites or groups of sites work. To achieve this, the decentralised infrastructure can therefore be designed to allow control of switching from the central NMS, or by intelligent automated switching, or by a completely manual override at the transmitter site if an engineer is present.

By allowing a much more flexible approach to satellite infrastructure design, more intelligent switching opens up the possibility of a new decentralised model for satellite operations using a greater standardisation of hardware. Operators can now design lower maintenance and more resilience into their systems, together with a greater flexibility to evolve in response to changing requirements and conditions while maintaining uninterrupted service.


Tags: iss091 | Bridge Technologies | Decentralising infrastructure | Simen Frostad
Contributing Author Simen Frostad

Read this article in the tv-bay digital magazine
Article Copyright tv-bay limited. All trademarks recognised.
Reproduction of the content strictly prohibited without written consent.

Related Interviews
  • Bridge Technologies QoE Monitoring with Mobile Videowall Display at IBC 2013

    Bridge Technologies QoE Monitoring with Mobile Videowall Display at IBC 2013

  • Bridge Technologies PocketProbe App at NAB 2013

    Bridge Technologies PocketProbe App at NAB 2013

  • Bridge Technologies at IBC 2012

    Bridge Technologies at IBC 2012

  • Bridge Technologies at IBC2011

    Bridge Technologies at IBC2011


Articles
Peli Air 1507 Review
Phil Vinter Originally named after a bird that carries its precious cargo through the skies, it was, perhaps, only a matter of time before Peli released its Air range.
Tags: iss133 | peli | peli air 1507 | trekpak | Phil Vinter
Contributing Author Phil Vinter Click to read or download PDF
OB999 Accelerates Hill Climb Broadcast
Nick Collier Over the last century, The Shelsley Walsh Speed Hill Climb has been attempted by some of the world’s most accomplished racing drivers striving to be the fastest up the 1,000 yard, 1 in 6 gradient track.
Tags: iss133 | ob999 | blackmagic | atem | multicam | videohub | cleanswitch | premiere pro | hyperdeck | Nick Collier
Contributing Author Nick Collier Click to read or download PDF
Ruth Matos Interview - A Career Unfolds
Ruth Matos We first met Ruth when we employed her as a student to help with our live studio at BVE in 2013. We were struck by her determination, passion and ‘I’ll do anything to help’ attitude. We became friends of Facebook and have since seen her career in the industry develop and unfold. We thought it was about time to catch up and share her inspiring story of where she is now, how she got there and the challenges she has faced along the way.
Tags: iss133 | interview | filmming | career | education | Ruth Matos
Contributing Author Ruth Matos Click to read or download PDF
The Pace of Change
Dick Hobbs - new

The youngest human to stand on the moon (so far) was Charles Moss, the lunar module pilot of Apollo 16. Charlie had a wonderful claim: his father witnessed the Wright Brothers’ first flight at Kitty Hawk, and lived to see his son on the moon.

Does anything capture the speed of technological advance better than that? The whole of the history of powered flight in one lifetime.

Tags: iss133 | state of the nation | st2110 | st2110-10 | Dick Hobbs - new
Contributing Author Dick Hobbs - new Click to read or download PDF
Taking on a self employed placement year
Joshua Round The idea of being self-employed or freelancing has always been somewhat terrifying for me. There is a level of uncertainty and responsibility that comes with the freedom of being self-employed, the likes of which makes me wonder why I chose to give it a go for my placement year as part of my university course - (BSc) Television and Broadcasting.
Tags: iss133 | placement year | university | student | education | portsmouth | Joshua Round
Contributing Author Joshua Round Click to read or download PDF