So what is Digital Television. Part 2 - Back to Basics


Component digital video
The designers of early analogue special effects equipment recognized the advantage of keeping the red, green, and blue video channels separate as much as possible during any processing. The PAL and NTSC encoding/decoding process is not transparent and multiple generations of encoding and decoding progressively degrade the signal. The signal in the camera starts out with independent channels of red, green, and blue information, and it is best to handle these signals through the system with as few format generations as possible before encoding them into PAL or NTSC for transmission to the home.
But handling three separate coordinated channels of information through the television plant presents logistic and reliability problems. From a practical standpoint, these three signals should all coexist on one wire, or commonly a single coaxial cable. As it turns out, we can simply matrix these three components, the red, green, and blue video channels, to a more efficient set consisting of luma and two colour-difference signals; digitize each of them, and multiplex the data onto a single coaxial cable. We can handle this data signal much as we do traditional PAL or NTSC composite video. Now we are handling a high-speed stream of numeric data. Although this data signal contains energy changing at a much faster rate than the 5 to 6 MHz energy in a PAL or NTSC video signal, it can be handled losslessly and with less maintenance over reasonable distances. Once the video signal is in the digital domain, we can easily extract its components for individual processing and recombine them again in the digital domain without any further loss or interaction among the channels.
Component and digital techniques contribute significant advantages in video quality control, and the speed of digital devices has made the bandwidth of high-definition video practical. Digital also lends itself to processing with various compression algorithms to reduce the total amount of data needed. It is now possible to convey high-definition video and associated multichannel audio in the bandwidth required for high-quality real-time analogue video.
Moving Forward from Analogue to Digital
The digital data stream can be easily broken down into its separate components, often serving the same function as their analogue counterparts. We will continue with this analogy as we describe and compare the analogue and digital video domains. Once we clearly understand the similarity between analogue and digital video we can move to HDTV, which is often a digital representation of the corresponding high-definition analogue format.
PAL and NTSC video signals are composites of the three camera channels, the primary colour components red, green, and blue, matrixed together to form a luminance channel summed with the modulation products of a suppressed subcarrier containing two channels of colour information. A third system of single-channel composite transmission is the SECAM system, which uses a pair of frequency-modulated subcarriers to convey chroma information. In the studio, there is no specific requirement that the signal be PAL, NTSC or SECAM at any point between the camera RGB pickup devices and the RGB channels of the final display device. While an understanding of PAL, NTSC or SECAM is useful, we need not invest in any new study of composite video.
The RGB component signal
A video camera splits the light of the image into three primary colours – red, green, and blue. Sensors in the camera convert these individual monochrome images into separate electrical signals. Synchronization information is added to the signals to identify the left edge of the picture and the top of the picture. Information to synchronize the display with the camera may be added to the green channel or occasionally added to all three channels, or routed separately.
The simplest hookup, as shown in Figure 1, is direct R, G, and B, out of the camera, into the picture monitor. The multi-wire transmission system is the same for analogue standard or analogue high-definition video. A multi-wire connection might be used in small, permanently configured sub-systems.
This method produces a high-quality image from camera to display, but carrying the signals as three separate channels, involves the engineer to ensure each channel processes the signals with the same overall gain, direct curent (dc) offset, time delay, and frequency response. A gain inequality or dc offset error between the channels will produce subtle changes in the colour of the final display. The system could also suffer from timing errors, which could be produced from different lengths of cable or different methods of routing each signal from camera to display. This would produce timing offset between the channels producing a softening or blurring in the picture – and in severe cases multiple, separated images. A difference in frequency response between channels would cause transient effects as the channels were recombined.
Clearly, there is a need to handle the three channels as one.
Insertion of a PAL or NTSC encoder and decoder (Figure 2) does nothing for simplicity except make the signal easier to handle on one wire within the television plant. System bandwidth is compromised in a friendly way to contain the energy of the three video signals in 5.0 to 5.5 MHz (PAL) or 4.2 MHz (NTSC). The single-wire configuration makes video routing easier, but frequency response and timing must be considered over longer paths. Because both chroma and luma in the PAL or NTSC composite signal share the, 5.0, 5.5 or 4.2 MHz, multiple generations of encoding and decoding must be avoided.
By substituting component digital encoders and decoders, the hookup (Figure 3) is no more complex and is better in performance. Energy in the single coaxial cable is now at a data rate of 270 Mb/s for standard definition signals; 1.485 Gb/s or higher for high-definition signals. Standard definition signals could be converted to analogue NTSC or PAL for transmission within traditional broadcast television channels. High-definition signals must be compressed for on-air transmission within the channel bandwidth of existing PAL or NTSC channels.

Tags: iss055 | tektronix | digital television | pal | ntsc | secam | N/A
Contributing Author N/A

Read this article in the tv-bay digital magazine
Article Copyright tv-bay limited. All trademarks recognised.
Reproduction of the content strictly prohibited without written consent.

Related Interviews
  • Tektronix at IBC 2016

    Tektronix at IBC 2016

  • Tektronix at IBC 2015

    Tektronix at IBC 2015

  • Tektronix at IBC 2014

    Tektronix at IBC 2014

  • Tektronix at IBC 2013

    Tektronix at IBC 2013

  • Tektronix at IBC2011

    Tektronix at IBC2011

  • 6K Sony Venice and Sony 4k Palm Camcorders at IBC 2017

    6K Sony Venice and Sony 4k Palm Camcorders at IBC 2017


Related Shows
  • Fantastic 4k: BVE Day 3

    Fantastic 4k: BVE Day 3


Articles
Perimeter LED screens management
Nicolas Houel Opened in January 2016, Parc Olympique Lyonnais, also known as Groupama Stadium, is the new home of Olympique Lyonnais football club, one of the most popular clubs in France. Since its inauguration, the stadium was a host of UEFA Euro 2016, and was also chosen to stage, among other important events, the 2018 UEFA Europa League Final and football at the 2024 Summer Olympics.
Tags: iss133 | 3dstorm | graphics | groupama stadium | liveexpert | livecg | deltacast | Nicolas Houel
Contributing Author Nicolas Houel Click to read or download PDF
Ruth Matos Interview - A Career Unfolds
Ruth Matos We first met Ruth when we employed her as a student to help with our live studio at BVE in 2013. We were struck by her determination, passion and ‘I’ll do anything to help’ attitude. We became friends of Facebook and have since seen her career in the industry develop and unfold. We thought it was about time to catch up and share her inspiring story of where she is now, how she got there and the challenges she has faced along the way.
Tags: iss133 | interview | filmming | career | education | Ruth Matos
Contributing Author Ruth Matos Click to read or download PDF
Smashing the WTA Tour
Danny Ridler The Women’s Tennis Association (WTA) is the global leader in women’s professional sport with more than 2500 players representing nearly 100 nations competing for a record $146 million in prize money. The 2018 WTA competitive season includes 54 events and four Grand Slams in 30 countries. In 2017, the WTA was watched around the world by a total TV audience of 500 million – with host broadcast services provided by NEP UK.
Tags: iss133 | tennis | wta | nep | outside broadcast | ob | Danny Ridler
Contributing Author Danny Ridler Click to read or download PDF
What is next in OTT
Mary Kay Evans In the past year alone, we’ve seen a substantial increase in the amount of OTT content that’s being streamed. In the first quarter of 2018, there’s been a 114 percent year-over-year growth in streaming video hours, and those numbers are only expected to rise. With OTT revenue predicted to reach $16.6B in 2018, a 40% gain over last year, there’s no question that OTT is booming, and that there’s never been a more critical time to pay attention to the space.
Tags: iss133 | ott | verizon | cisco | Mary Kay Evans
Contributing Author Mary Kay Evans Click to read or download PDF
OB999 Accelerates Hill Climb Broadcast
Nick Collier Over the last century, The Shelsley Walsh Speed Hill Climb has been attempted by some of the world’s most accomplished racing drivers striving to be the fastest up the 1,000 yard, 1 in 6 gradient track.
Tags: iss133 | ob999 | blackmagic | atem | multicam | videohub | cleanswitch | premiere pro | hyperdeck | Nick Collier
Contributing Author Nick Collier Click to read or download PDF