To view this page ensure that Adobe Flash Player version 11.1.0 or greater is installed.

McCurdy intercom c1989 Between Bob’s connections and Charlie’s technical know- how, rudimentary, clunky but effective intercom systems were provided to the touring bands for real life ‘on the road again’ tests. As the bands went from town to town, Bob started getting calls from venues around the US, “Where can we get that Intercom that The Steve Miller Band used last night?” The name “Clear-Com” (clear communications) found its genesis at this time in 1968. This is how multi- channel partyline intercom started in the US. Broadcast Intercom US television and theatre production caught wind of the Partyline technology having seen it used on follow-spots at concerts. In 1977 for example, one of the very fi rst calls for a beltpack TV application came from WNEM-TV in Saginaw, MI. TV and Theatre drove the technology towards ever greater solutions, with connections to the broadcast 4-wire matrix becoming commonplace by the mid 1980s. In the 1970s, European TV production was stepping up to the complexities of higher resolution UHF pictures and colourisation, and now had upward of 15-20 people all working together on one recorded or live TV show. House- made 4-wire (a pair in each direction) CMOS and relay switched systems were not only large, cumbersome and highly customised; they could not be altered as productions changed and each new use required a complete project to accomplish. Philip Drake Electronics, beginning in 1976 in the UK, saw a need to streamline this custom approach and provided a tool set of Euro-rack, reusable and modular cards with input, crosspoint router, output and GPI cards for the BBC. Other European manufacturers also provided similar modular systems that could be designed and manufactured more quickly drove the industry toward standard matrix based intercom solutions. System modularity certainly helped in providing repeatable solutions across Europe but once wired in the rack frame, changes were hard to make and a complete re-wire and full input to output crosspoint test would have to be done. The down time made this option a last resort and there was a need to fi nd a way to make changes much easier. In the 1980s microprocessors and on-board memory made it possible to hold the ‘routing tables sent from a user confi gurable PC database in CPU card memory. Now all the user panels could have confi gurable keys to talk to selectable destinations that could be changed in almost real time. Thus a small news studio set-up could be changed for an evening recording of a game show with live audience all within the same studio and control room. The one full and a half intercom equipment racks went from 40-60RU down to one equipment rack of about 30RU for 96 ports, including interfacing cards to lines and cameras and for the DC power supplies. In the 1980s we saw standardised products from US and European manufactures using modular, PC confi gurable systems for intercom solutions. In 1989 for example Clear-Com in the US introduced the compact Matrix Plus system, Drake in the UK brought out the 6000 and Trilogy Broadcast in the UK with their Commander system. McCurdy, later bought by Telex in 1990, added their early matrix solutions to the growing options for the global TV broadcast industry. These systems had panel connections that carried audio, power and serial data with 12 to 25 core screened multicore cables between the central equipment matrix frames and each of the outstation panels. The TX/RX serial data removed the requirement to have an ‘activation wire’ per panel switch, which could be as many as 48 switches. However it wasn’t until full digitisation of intercom in the early 1990s that the equipment became almost portable. KITPLUS - THE TV-BAY MAGAZINE: ISSUE 93 SEPTEMBER 2014 | 67