Audio Networking bY Jim Green, UK Sales Manager for Calrec S Online, my sister is quite the socialite. She has more friends on Facebook than people I've ever met, and a very active Twitter account. Let's not even get started on LinkedIn, Buzzsprout, Flickr, You Tube, MySpace and Scrib'd. Half her life is on the web, and while the conventions of these online relationships remain a mystery to me, my sister is rather blasé about it. The truth is, I am too out of touch to face the fact that these social networks are incredibly efficient ways of communicating. A well timed Tweet can do the work of a thousand phone calls. ocial media has changed the way we work and the way we communicate, in exactly the same way that technology has allowed us to develop other networks. Even in our little industry, networking has been turned on its head, as exemplified by übermodern broadcast centres currently being constructed in Manchester and London. And the results are exactly the same ­ greater efficiencies, less work, more scope. It was in the 1970's that networking was first introduced into computing, exploited initially with simple Local Area Networks (LAN). Over time broadcasters picked up on these ways of working, and networking became a technical solution to sharing incoming and outgoing sources. Audio networks were originally designed to provide a means of routing digital audio around and between mixers - with the emphasis firmly on the consoles. All of the hardware and software controlling the audio network remained in the desks. Nowadays the opposite is true. Increasingly, studio managers and planners start with the network and build consoles and mic boxes into it. In other words, rather than starting with the console at the centre of the system, it's more helpful to think of the console as a mere component on the network, like an I/O box. More and more I/O processing and control hardware can be added to this when required, and routing can rapidly be redefined in software. Forward-thinking broadcasters are now taking full advantage of this technology. In the last 18 months, three of the most ambitious new broadcast centres in the world have been planned, specified and built in the UK. All three have proprietary networks at the heart of their infrastructure. In Salford Quays, Manchester, the MediaCityUK facility will house one of the largest high definition studio facilities in Europe, featuring seven HD television studios and two audio studios. The facility has three Apollo consoles for studios A, B and C, and an Artemis console for studio E. All four studios will be used to provide live to air and live to tape content for light entertainment, news and sport. In addition, all four consoles will be networked via Hydra2 technology, providing MediaCityUK with the flexibility enabling every console to access all I/O resources on the network. More recently, BSkyB commenced work on Harlequin 1, Sky's new HD studio, post-production, and broadcast control centre in Osterley, West London. Again, the network is very much a central part of that project, with a number of consoles sat on a huge network which connects them across six control rooms, six studios and a further 10 voiceover booths within their extensive International Commentary Area. Finally, the BBC's massive West One redevelopment of Broadcasting House in London uses four Artemis consoles networked across four studios and four control rooms. All three facilities use Hydra2 networking to ensure that the network topology meets the specific requirements of each facility, from simple console to console connections to more complex topologies involving centrally located routers and interface resources. This is the chief advantage of this new breed of networking; flexibility. In broadcasting, a hard-wired setup requires a separate physical connection for each audio channel in the broadcast system. This can be from a microphone, mixing console, or some other third party equipment. If any re-routing of that signal is required a new physical wire has to be connected. This might be a trivial concern, but in modern broadcast environments such as the three illustrated above, it can be much more complicated. On a properly thought out network, system hardware is already connected (usually via CAT5 or fibre), such that any input signal can be fed to any output and the routing of a signal is software-controllable, easily remapped and re-routed with a few mouse clicks. This not only makes it easier to route incoming and outgoing signals, but it also gives operators and studio managers more flexibility, and allows the creation of complex 62 | TV-BAY MAGAZINE